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1 Understanding how the DNNs learn or what happens inside the deep
architecture is not simple

2 Not many tools can help us analyse these complex architectures
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1 In case of CNNs, we can look at
the parameters (e.g. filters as images)

activation maps for the given input
distribution of activations for a population of samples
derivative of selected activations wrt a given input
synthesize samples that can cause maximal activations at selected
neurons
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Visualize in case of simpler models

1 Visualize the weights via plotting

2 e.g. input for an MLP is 2D vector
3 weights in the first hidden layer are lines, we can plot them
4 observe these lines during the course of training
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CNN filters

1 Similar visualization gets challenging on practical DNNs because of
the high dimensional inputs

2 View the filters learned by CNNs as images
3 Appropriate at the first layer (since the filters will have less number of

channels like actual images)
4 Later layers will have multiple channels and makes it difficult to

visualize
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CNN Filters (LeNet and AlexNet)
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Visualize feature maps

1 Since CNNs maintain the 2D structure, we can visualize the
feature/activation maps at any layer

2 Since there may be a large number of channels, we may have to pick
a subset of them

3 Visualizing individual maps may not be very helpful

Dr. Konda Reddy Mopuri dlc-10.1/Inside DNNs 7



Visualize feature maps

1 Since CNNs maintain the 2D structure, we can visualize the
feature/activation maps at any layer

2 Since there may be a large number of channels, we may have to pick
a subset of them

3 Visualizing individual maps may not be very helpful

Dr. Konda Reddy Mopuri dlc-10.1/Inside DNNs 7



Visualize feature maps

1 Since CNNs maintain the 2D structure, we can visualize the
feature/activation maps at any layer

2 Since there may be a large number of channels, we may have to pick
a subset of them

3 Visualizing individual maps may not be very helpful

Dr. Konda Reddy Mopuri dlc-10.1/Inside DNNs 7



Visualize feature maps

Figure credits: Shivang Shrivastav
Dr. Konda Reddy Mopuri dlc-10.1/Inside DNNs 8



Visualize feature maps

1 Although it is quite hard to precisely identify the role each filter, one
may identify edge and some blob detectors.

2 As we go deeper in the network, the more difficult it gets to
understand the role of filters
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Visualize feature maps

1 Allows in particular to find units with a clear semantic/concept

Ross Girshick et al. 2014
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Analyze the model behavior in the neighborhood of an input
1 We may estimate the importance of a portion of input via occlusion
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Occlusion sensitivity
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Occlusion sensitivity
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Saliency maps

1 Highlight the parts of input that are influential for the output

2 Compute the derivative of the output wrt the input over a trained
DNN model (Simonyan et al. 2013)

∇|xfc(x;w)

3 input.requires_grad_()
output = model(input)
grad_input, = torch.autograd.grad(output[0, c], input)
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Gradient as saliency
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Smooth Grad

1 (Pixel level) Gradient is noisy

2 We can smooth the gradient by taking the mean gradient over
(slightly) perturbed inputs (Smilkov et al. 2017)

∇̃|xfy(x;w) = 1
N

N∑
n=1
∇|xfy(x+ εn;w)

where εn ∼ N (0, σ2I)
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Smooth Grad
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Improvements to gradient based visualization

1 Deconvolution by Zeiler and Fergus
2 Guided Backpropagation by Springenberg et al. (2014)
3 Class Activation Maps ( Zhou et al. 2016)
4 Gradient-weighted Class Activation Mapping (Grad-CAM) by

Selvaraju et al. (2016)
5 ...
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